报告题目:Empirical likelihood in semiparametric models
报告时间:2020-12-11下午3:00--4:00
报告地点:数学楼2-2
报告摘要:
In this talk, we discuss the empirical likelihood based inference problem in semiparametric models. Firstly, we investigate the empirical likelihood based inference for the parameters in a partially linear single-index model. We propose a bias correction method to achieve that the empirical likelihood ratio has standard chi-square limit. Secondly, we investigate the empirical likelihood-based inference for a varying coefficient model with longitudinal data. we propose three empirical likelihood ratios: the naive empirical likelihood ratio, the mean-corrected empirical likelihood ratio and the residual-adjusted empirical likelihood ratio, and show that these ratios have chi-square limits. In addition, when some components are of particular interest, we suggest the mean-corrected and residual-adjusted partial empirical likelihood ratios for the construction of the confidence regions/intervals. A simulation study is undertaken to compare the empirical likelihood and the normal approximation methods in terms of coverage accuracies and average areas/widths of confidence regions/intervals. An example in epidemiology is used for illustration.
个人简介:
薛留根,北京工业大学教授,博士生导师。主要学术兼职:中国现场统计研究会理事及生存分析分会副理事长等。研究方向:非参数统计与数据分析;主要研究兴趣包括:非参数与半参数模型的统计推断、复杂数据统计分析与建模、经验似然等。主持国家和省部级科研项目15项,其中连续5次获国家自然科学基金资助。出版著作8部,其中3部专著。在《Journal of the American Statistical Association》、《Journal of the Royal Statistical Society,Series B》、《The Annals of Statistics》、《Biometrika》等学术期刊上发表论文260余篇,其中3篇为高被引论文。以第一完成人获教育部自然科学二等奖1项,获全国统计科学研究优秀成果一等奖1项。已招收研究生65人,其中博士研究生20人,硕士研究生45人;在指导的研究生中,1人获北京市优秀博士学位论文以及全国优秀博士学位论文提名奖,1人获全国统计科学研究优秀成果博士学位论文二等奖。