题目:Applications of Linear Algebraic Methods in Combinatorics and Finite Geometry
时间:2017.11.29 (周三) 下午4:30
地点:理科楼112
摘要:Most combinatorial objects can be described by incidence, adjacency, or some other (0,1)-matrices. So one basic approach in combinatorics is to investigate combinatorial objects by using linear algebraic parameters (ranks over various fields, spectrum, Smith normal forms, etc.) of their corresponding matrices. In this talk, we will look at some successful examples of this approach; some examples are old, and some are new. In particular, we will talk about the recent bounds on the size of partial spreads of H(2d-1,q^2) and on the size of partial ovoids of the Ree-Tits octagon. This is a joint work with Ferdinand Ihringer and Peter Sin.
报告人简介:
向青,1995获美国 Ohio State University博士学位,现为美国特拉华大学(University of Delaware)教授。主要研究方向为组合设计、有限几何、编码和加法组合。现为国际组合数学界权威期刊《The Electronic Journal of Combinatorics》主编,同时担任SCI期刊《Journal of Combinatorial Designs》、《Designs, Codes and Cryptography》的编委。曾获得国际组合数学及其应用协会颁发的杰出青年学术成就奖—Kirkman Medal。在国际组合数学界最高级别杂志《J. Combin. Theory Ser. A》,《J. Combin. Theory Ser. B》,以及《Trans. Amer. Math. Soc.》,《IEEE Trans. Inform. Theory》等重要国际期刊上发表学术论文80余篇。主持完成美国国家自然科学基金、美国国家安全局等科研项目10余项。曾在国际学术会议上作大会报告或特邀报告50余次。